Intelligent Way to Simplify Seismic Stability Analysis for Embankment Dams under Earthquake Loading

土石壩受震反應分析智慧型簡化 與功能的加強

May 1, 2019

NCREE

Typical Pseudo Static Analysis for Slopes or Dams

Figure 1. Pseudostatic slope stability analysis

Ky: Yield acceleration FS = 1.0 when K=Ky

Pseudo Static Slope Stability Analysis

- 2. What did we not capture with K
- 3. Is it related to the PGA
- 4. Duration of the excitation

Problems with Pseudo Static Analysis

- What Ks (pseudo-static coefficient) to use?
- What is your focus?
 - Factor of Safety ←Code requirement
 - How much will the slope move Performance requirement
 - What is more important for dam engineers
- You may have the shaking intensity right, but how do you estimate slope response?
 - Dam Height
 - Embankment material (earthfill, rockfill, hydraulic fill)
- With high Ks your stability program may not work (nonconvergence)

Seed and his co-workers (1966, 1979, 1981, 1983)

Dam		<u>Country</u>	Seismic <u>Coefficient</u>	Safety <u>Factor</u>
Aviemore		New Zealand	0.10	1.50
Bersemisnoi		Canada	0.10	1.25
Digma		Chile	0.10	1.15
Globocica		Yugoslavia	0.10	1.00
Karamauri		Turkey	0.10	1.20
Kisenyama		Japan	0.12	1.15
Mica		Canada	0.10	1.25
Misakubo		Japan	0.12	
Netzahualcovote		Mexico	0.15	1.36
Oroville		United States	0.10	1.20
Paloma		Chile	0.12 to 0.20	1.25 to 1.10
Ramganga		India	0.12	1.20
Tercan		Turkey	0.15	1.20
Yeso		Chile	0.12	1.50
Notes: 1	l. 2.	In California, $k = 0.05$ to 0.15 and FS > 1 In Japan, $k < 0.20$ and FS > 1		

The Corps of Engineers Manual EM-1110-2-1902 (1982)

Where earthquake threat is major and great, k = 0.10 and 0.15, respectively.

Marcuson and Franklin (1983)

 $k = \frac{1}{2}$ to $\frac{1}{2}$ of MHA at the crest, with FS ≥ 1.0 .

Hynes-Griffen and Franklin (1984)

 $k = \frac{1}{2}$ MHA of bedrock, with FS \geq 1.0 and 20% reduction in material strengths.

Finite Element Analysis

範例圖5 壩體內部反應譜及加速度歷時

Yield Acceleration

Yield Acceleration (Ky)

The pseudo-static seismic coefficient, k, that results in a factor of safety of 1.0 is determined by:

$$k_y = \frac{a_y}{g}$$

Equation 3

where the yield seismic coefficient is a ratio of the yield acceleration to the gravitational constant, g.

Figure 1: Comparison of the computed factor of safety and average acceleration.

Newmark Sliding Block procedure

Good Dam Deformation Needs

- Good and defendable ground motion
- Ability to qualify ground motion uncertainty
- Geotechnical drilling at multiple dam locaitons
 - Cost
 - Hydraulic fracturing the dam during drilling
 - Introduce artificial weak zone
- Finite Element analysis of dam
- Seldon verify if the dam model is correct
- New ideas?????

Key to approach is transfer function

- $f_n = natural frequency$
- β = damping

$$SDOF parameters$$

$$f_n = 2.27 Hz$$

$$\beta = 0.05$$

$$\alpha = 1.0$$

$$SDOF parameters$$

$$f_n = 2.27 Hz$$

$$\beta = 0.05$$

$$\alpha = 0.5$$

$$\begin{array}{|c|c|}\hline & \underline{SDOF \ parameters} \\ & f_n = 2.27 \ Hz \\ & \beta = 0.05 \\ & \alpha = 1.5 \end{array}$$

SDOF parameters $f_n = 2.27 \text{ Hz}$ $\beta = 0.28$ $\alpha = 0.8$

QUAD4M (FEM) Versus SDOF

QUAD4MU Dam Response

SDOF Dam Response

Displacement = 80.09 cm

Displacement = **80.02 cm**

Modeling nrocess Dynamic analyses to estimate shear induced deformations

Simplified method to estimate shear induced deformations

Select ground motions

Model sliding mass

Dam4, Dam5, Dam6

Height: 50 ft

Crest Width: 16 ft

(Deep slip surface)

(Shallow slip surface)

Deformations from Newmark sliding block analysis

Deformation = **80 cm**

Deformation = **80 cm**

Displacements ("negative")

QUAD4MU Dam Response

SDOF Dam Response

Displacement = **58.40 cm**

Displacement = **60.82 cm**

Displacements

QUAD4MU Dam Response

SDOF Dam Response

Displacement = **25.03 cm**

Displacement = 24.10 cm

Displacements ("negative")

QUAD4MU Dam Response

SDOF Dam Response

Displacement = 26.98 cm

Displacement = 25.06 cm

Development of Model

Compare deformations

Maximum horizontal

Shear Wave Velocity Profiles

Dam configurations

- Heights: 25, 50, 100, & 150 ft
- Velocity profiles: low, medium, high
- Slip surface: toe and mid-height

Introduction and Motivation

What does a quantitative risk analysis lo

Implementation of Model

What does a quantitative risk analysis look like?

H/V spectral ratio

- Collect 3-component ambient noise on dam crest
- No active source required
- Record for 30 to 90 minutes based on height of dam
- Ratio of horizontal to vertical:
 - Natural frequency
 - Estimate of damping

Spectral ratios

Transverse/Vertical

Longitudinal/Vertical

Additional spectral ratios

Salt Springs (328 ft)

Philbrook Main (87 ft)

PSHA / Select Ground Motions

Seismic Hazard 1.E-01 1.E-01 1.E-02 1.E-03 1.E-03 1.E-04 1.E-04 1.E-05 1.E-06 1.E-06 0.1 PGA (g) 0.01 1

+ Dam Response Model \rightarrow

Dam Deformation 100 Deformation (cm) 10 1 0.1 0.01 0.1 PGA (g) 0.01

Risk inputs

PSHA / Select+Dam Response Model→Risk inputsGround MotionsDeformation Hazard

Pseudo Static Structural Analysis

Conclusions

- New method improves analytical dam model
- Computing SDOF response is fast
- Can better assess ground motion uncertainty impact on dam displacement
- Can produce dam displacement hazard and quantify uncertainty
- Fundamentally Improve dam risk calculation and facilitate Risk Informed Decision Making
- Problems: Does not compare well for Mag 6 or below earthquakes. Why?

Fig. 18. Determination of effective acceleration for potential slide mass

Figure 1 Abutment Versus Crest Acceleration Developed by (I.M. Idriss)

Time Domain

Frequency Domain

TF

Simplified Dam Response Model

Deep Failure Surface

Shallow Failure Surface

Dam configurations

- Heights: 25, 50, 100, & 150 ft
- Velocity profiles: low, medium, high
- Slip surface: toe and mid-height

Modeling nrocess Dynamic analyses to estimate shear induced deformations

Simplified method to estimate shear induced deformations

Select ground motions

Model sliding mass

